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SUMMARY. Pairwise interacting point processes are commonly used to model spatial
point patterns. To perform inference, the established frequentist methods can pro-
duce good point estimates when the interaction in the data is moderate, but some
methods may produce severely biased estimates when there is strong interaction
present in the data. Furthermore, because the sampling distributions of the esti-
mates are unclear, interval estimates are typically obtained by parametric bootstrap
methods. In the current setting however, the behavior of such estimates is not well
understood. In this article we propose Bayesian methods for obtaining inferences
in a pairwise interacting point process. The requisite application of Markov chain

Monte Carlo (MCMC) techniques is complicated by an intractable function of the
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parameters in the likelthood. The acceptance probability in a Metropolis-Hastings
algorithm involves the ratio of two likelihoods evaluated at differing parameter val-
ues. The intractable functions do not cancel, and hence an intractable ratio r must
be estimated within each iteration of a Metropolis-Hastings sampler. We propose
the use of importance sampling techniques within MCMC to address this problem.
While r may be estimated by other methods, these, in general, are not readily ap-
plied in a Bayesian setting. We demonstrate the validity of our importance sampling
approach with a small simulation study. Finally, we analyze the Swedish pine sapling

dataset (Strand, 1972) and contrast the results with those in the literature.
KEY WORDS: Bayesian estimation; Metropolis-Hastings algorithm; pairwise inter-

acting point process; grid-based importance sampling; spatial point pattern; Swedish

pine sapling data

1. Introduction

The spatial locations of events in some designated region constitute a “spatial point
pattern”. Figure 1 depicts a well-known example, data collected by Strand (1972)

on the locations of 71 Swedish pine saplings in a 10 x 10 meter plot.
[Figure 1 about here.]

In comparison with a binomial (completely random) process with the same number
of points (Figure 2), the sapling data has far fewer pairs of points that are close

together.

[Figure 2 about here.]



The more regular spacing of the saplings suggests biological competition for water,
light, canopy space, or adequate soil for root. growth.

Pairwise interacting point processes (PIPPs) form a very popular and flexible
class of models for spatial point patterns in a bounded region. In & PIPP, the inter-
action (attraction or inhibition) between two points is described by a pair potential
Junction — typically a function of the inter-point Fuclidean distance. Estimation
in PIPPs is notoriously difficult because the likelihood contains an analytically in-
tractable function of the parameters. Because PIPPs are not optimal to model spatial
point patterns with spatial attraction (Heikkinen and Penttinen, 1999), we focus on

estimation in regular (inhibitory) patterns.

2. Pairwise interacting point processes

Suppose a point pattern x = {x; : ¢ = 1,...,n} is observed in some bounded re-
gion V where z; € V Vi (we assume without loss of generality that V is a subset
of two-dimensional Iuclidean space). Consider a family of pair potential functions
{¢o(s) : 6 € B}, indexed by a parameter vector 8 = (£y,...,0,), of Euclidean dis-

tance s. A common pair potential function is (Strauss, 1975)

h s<b
¢.9(8) = (1)

0 s>b
where @ = (b, h). In the literature, b is known as the interaction distance and h is
termed the Straussian parameter. The Straussian parameter describes the strength

of inhibition (or attraction), and the interaction distance indicates the distance at

which pairs of points cease to interact. Patterns realized under a PIPP in which



$o(-) > 0 tend to exhibit spatial regularity; the inter-point distance tends to be
larger than would be expected under a binomial process (i.e. when ¢y(-) = 0).

As in Degenhardt (1999), Diggle et al. (1994), Ogata and Tanemura (1981),
and Stoyan and Penttinen (2000), we will condition on 7 because estimation of the
chemical activity parameter (which regulates the number of points in the pattern) is

not of primary concern. Therefore, the probability density function, conditional on

n and @, is
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where ||| denotes Euclidean distance and
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is a normalization constant which depends on 8. Tor simplicity, we notationally
suppress the conditioning on n.

When p{(x|8) is regarded as a probability density function (i.e. p{x|f) is a function
of x), then Z,(f) is a normalizing constant. On the other hand, when p(x|0) is

regarded as a likelihood, say

def 9(x10)

then Z,(0) is not a constant, but a function of the parameter vector #. In a PIPP,
analytical computation of Z,(f) is generally impossible. Thus, to perform {approx-

imate) likelihood based inferences, Z,(0) must be estimated for different candidate



values of . Heikkinen and Penttinen (1999) observe that with conditioning on n,

Z.(0) is finite for all pair potential functions ¢ : (0,00) — {0} UR.

3. Construction of the Metropolis-Hastings algorithm

Suppose a spatial point pattern x is observed in V. We will let p(#) denote the prior
distribution on 6 = (01,...,0n), L(#) = ¢{x|0)/Z.(8) will denote the likelihood, and
p(0]x) will denote the posterior distribution of # given x. The Metropolis-Hastings
algorithm (Metropolis et al., 1953; Hastings, 1970) enables sampling from p(f]x).

The systematic scan algorithm proceeds as follows:

1. Choose an arbitrary starting value for 8, say 0 = (6?), ., 09) where t = 0.
For simplicity we update 95'), then 6’&'), and so on. When all m components

have been updated, we repeat the process.

2. Suppose the first ¢ — 1 components have been updated and we now wish to up-
date 9?). Letting 6" = (thﬂ), N thjl), 9?), Q,E?l, ...,8%) denote the current
parameter vector, generate a candidate value 8 from a proposal distribution
@:(6716°). Let gprop — (9D gttD o5, 6,521, .., 0 denote the proposed

parameter vector.

3. Accept the candidate value 87, that is let 0% = g7, with probability

T
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otherwise reject the candidate value, i.e. let 95”1) = 6‘2-('5).
4. Jump to step 2. Repeat mT times to yield T iterations.

Because the intractable Z,(0°"") and Z,(6"*°"} do not cancel in the acceptance
probability, they must be approximated within every iteration of the sampler. There-
fore, the Metropolis-Hastings algorithm will be useful for PIPPs only if the in-

tractable ratio
déf Zn(gcurr)
Zn (gprop)

in (2) can be estimated accurately and efficiently.

4. Estimation of an intractable ratio via grid-based

importance sampling
Importance sampling {(Smith and Gelfand, 1992) allows the approximation of inte-
grals as follows. Suppose, for illustration, it is possible to obtain realizations, say
Y1,...,¥Yr, from some univariate density v{y). We are able to approximate an inte-

gral, say <y, with respect to some density f having the same support as v by

v = [ ) ) dy = 5 R f) o) =7 3

The ratio f(y:)/v(ye) is referred to as the importance sampling weight. If yy,..., yr
are obtained by MCMC, and the chain is ergodic, then 4 5 +. Higher order integrals
can be estimated in a similar manner. If the importance sampling density v is too
dissimilar from the target density f, then the importance sampling weights will be
highly variable, increasing the number of samples required to approximate v with

any given degree of accuracy.



4.1  Iistimating r via tmportance sampling

The key to implementing importance sampling is the ability to generate point
patterns from the probability density function p(x|f’) given any parameter vector &',
Ogata and Tanemura (1981} and Geyer and Moller (1994) developed Metropolis-
Hastings algorithms that can do this. The realizations, say xi,...,%p, can be
obtained without knowledge of the normalizing constant Z,(6"). Letting A = 1,

f = g(x]0), and v = p(x|#), we can approximate Z,(#) = fi» g(x]0) dx in (2) by

L& gld) 70 I glxd)
TXpl?) . T 2 gxd0)

This estimator can not be applied since Z,,(¢') is unknown. However, Z,(#) can be

estimated by
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where |V| is the area of V. Therefore, an estimate of Z,(0) is

o

: Ve gxo)
Zn(0) = —= )
O) = S i) 2 9(xlf)

To estimate the intractable ratio 7 in (2), compute

Za(0) 5L g6 /900" (6)
2:1
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Note the cancellation of the [V|*/ 3T | 1/9(x|#) terms.



4.2 Grid-based tmportance sampling

"To use the Metropolis-Hastings algorithm to fit a pairwise interaction model we
must be able to accurately estimate » for any values of 8°™ and @#°*P supported
in the posterior. It is, however, unlikely that any one importance sampling density
p(x]0") will be similar to p(x|6°*™) and p(x|#PP) for all §<** and GP™P, If p(x|F°™v)
or p(x|0P™P) or both are dissimilar to p(x|¢), then the estimator (6) is compromised.

Consider a saturation of locations, say 61,...,8, which form a grid over the
parameter space. Suppose at each location 6, importance samples are realized from
the importance sampling density p(x|6!). Now, regardless of 6% and §F™P, we
are able to choose an importance sampling density, say p(x|#:), which is similar to
p(x]0°"") and p(x|6P*°P). With this well chosen importance sampling density, we can
accurately estimate r. While this grid-based technique is quite simple, it is very
efficient since the simulations from the [ importance sampling densities need to be
generated only once. The same simulations can be used to estimate = for many %t
and GPrp,

If 8; is the closest importance sampling location to ", and if %1, ..., Xy are re-
alized (after burn-in) from the importance sampling density p(x|0}) = g(x|0)}/Z.(0?),

then we can estimate r by

T 9(xil0) /g(xal0h) as )
i1 9(x: |6 ) /(4 6})

7=

In order for the same importance sampling density to be close to both p(x|6*™) and
p(x|0P™P), the proposal distribution must propose candidates 0*" that are close

to 8<*"". Thus, the necessity of accurately estimating r requires that the sampler



move in small steps. Taking large steps causes sampler instability, and has, in some
instances, precluded convergence.

It is possible to estimate Z,(0°"") and 7, (67*°P) separately via (5) using different
importance sampling densities and to obtain an estimate of r by taking the ratio of
the two estimates (note that with different importance sampling densities, there is
not a cancellation as in (6)). However, estimating r via (7) significantly reduces the
variability of the estimates of r. In addition, our grid-based importance sampling
estimator (7} yields a notable improvement in the stability and mixing behavior of
the Metropolis-Hastings sampler.

Ratio importance sampling (Chen and Shao, 1997), originally described in a
non-spatial context, is essentially the same as our grid-based technique without the
construction of a grid. Because new importance samples must be generated at ev-
ery iteration of the overall Metropolis-Hastings sampler, (optimal) ratio importance
sampling is computationally costly. However, both techniques are applicable and

produce comparable inferences.

5. Choosing the grid coarseness and proposal densities

We now examine 1) how close " and ¢°™P must be to the grid location 0}, and
2) how close the proposal PP must be to #°F to get accurate estimates of r. Tor
illustration, we considered patterns with n = 50 points in the unit square. We use
the Straussian model (1), but with b fixed at 0.10 (thus 6 = h). For each g
and 0P listed in Table 1, we estimated r by generating 50,000 unthinned point
patterns (after a 5,000 iteration burn-in) from p(x|f; = 1.0) and computing (7). The

estimation procedure was repeated 100 times, enabling the coefficient of variation



(CV) of r to be approximated.
As expected, the more distant #°*P is from "™ (see the left side of Table 1), the

larger the CV of r.
[Table 1 about here.)

Thus, the proposal density should suggest candidates #°*°P which are close to #U,
From the right side of Table 1, we see that a distant importance sampling location
from #°** and #P™P also causes an inflated CV. Here, we can avoid undue variability
in the estimate of r by constructing an appropriately fine grid.

To better understand how to choose the grid and proposal densities for the in-
teraction distance, we fixed & = 1.0 and estimated the CV for different current and
proposed values of the interaction distance # = b. Here the importance samples were
generated from p(x|0; = 0.10). Table 2 demonstrates that 7P must be close to 6",
and, as before, a close importance sampling location to 8™ and 6°*? is essential to

prevent undue variability in the estimates of 7.
[Table 2 about here.]

To conclude, caution must be taken in the construction of the grid and proposal
densities. While general guidelines are difficult to obtain, we hope to motivate the

need for proper attention and care.

6. Simulation study: Comparing the frequentist
performance of Bayesian and frequentist estimates of a Straussian
parameter

We evaluated the performance of our MCMC method by conducting a simulation

study using the simplest possible PIPP: a Straussian model with interaction distance
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b fixed so that the only unknown parameter @ is the interaction {repulsion) strength

hin (1).

6.1 Setup

We simulated 100 point patterns of size n = 50 in the unit square from each of 10
Straussian models, all with b fixed at 0.15, but with 8 set at different values ranging
from 0.3 to 2.5.

Before running the Metropolis-Hastings samplers to fit models to the simulated
datasets, we generated the needed importance samples. We constructed a grid
0%, . . ., 0 over the parameter space with grid points at intervals of 0.5 from §; = —1.0
to 8y = 3.5. We generated 1,000 point patterns from each importance sampling
density p(xi6;) ¢ = 1,...,10 by running Geyer and Moller’s algorithm for 1,000,000
iterations (after burn-in) and retaining every 1,000 point pattern. Thus the 1,000
importance samples for each 0, were approximately independent and contained max-
imum information. Storage considerations unfortunately limited the possibility of
using all 1,000,000 importance samples for estimating r.

We placed a normal prior on 6, p(6) ~ N(i = 0, 0% = 100), which allowed the
MCMC sampler to explore spatial repulsion and, if dictated by the posterior, spatial
attraction. The large variance ensured only a small bias toward 0 in the posterior
means.

In the Metropolis-Hastings samplers for fitting the models, the importance sam-
ples from p(x|8!) with 8} closest to 8 were used to estimate r. The proposed height
* was chosen uniformly in the interval (§® — 0.5, 9% 4 0.5); thus the proposal ratio
equals unity. All samplers were started at 09 = 0. Geweke’s test for convergence

indicated no evidence that the chain had failed to converge by the 1,000%" iteration.
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For each simulated pattern, the sampler was run for 2,000 iterations following a 1,000

iteration burn-in.

6.2 Results

We used the Metropolis-Hastings output to estimate the posterior mean of 0 for
each simulated dataset. The estimated bias and mean squared error are displayed in

Table 3.
[Table 3 about here.|

The bias, in the frequentist sense, is quite negligible for any strength of repulsion.
We obtained similar results when estimating the interaction distance b in (1), as well
as when estimating b and h simultaneously (results not shown).

To evaluate coverage, five hundred patterns were simulated from p(x|0 = 1.0).
Table 4 displays the coverage and average width of the 95% highest posterior density
(HPD) and equal tail intervals, bias, and mean squared error estimated from the

simulated patterns.
[Table 4 about here.]

For comparison, two different proposals were examined: choose 6* uniformly in either
(0® — 1.0, 6® + 1.0) or (6 — 0.5, 60 +0.5).

Diggle et al. (1994) performed a similar simulation study from a frequentist point
of view — only in the number of points (n = 100) and interaction distance (€ = 0.10)
does their study differ from ours. They investigated the approximate maximum like-
lihood (via virial expansions) (Ripley, 1988), maximum pseudo-likelihood (Ripley,

1988), and Takacs-Fiksel methods (Fiksel, 1984; Fiksel, 1988; Takacs, 1986). The

12



approximate maximum likelihood method significantly under-estimated the amount
of repulsion for strongly repulsive patterns, and over-estimated the amount of repul-
sion in cases of weak interaction. The maximum pseudo-likelihood method either
under or over-estimated (depending on edge correction) the amount of repulsion
in patterns with strong inhibition, while the Takacs-IFiksel method generally yielded
unbiased estimates, but produced more outlying point estimates than the other meth-
ods. Diggle et al. concluded that the Takacs-Fiksel method performs poorly in cases

of weak interaction under other (i.e. non-Strauss) pair potential functions.

7. Analysis of the Swedish pine sapling data

Recall that Figure 1 displays the location of n = 71 Swedish pine saplings in a
10 x 10 meter region V. We assume that the pine saplings constitute a realization
of a Strauss point process. Therefore, the likelihood is

L(#) = exp {g 205 i;—zz-;)% (|| — w}”)}

where ¢g(-) is of the form (1). We will obtain estimates, both point and inter-
val, from the full posterior distribution under diffuse priors: b ~ Unif(0,2.5) and
h ~ N(2,6° = 100) (independent). We constructed a grid @),...,0, over the
two-dimensional parameter space with grid points at intervals of 0.25 from 0 to
2.5 for b and at intervals of 1.0 from 0 to 5.0 for A (including -0.5). We gener-
ated 1,000,000 point patterns (after burn-in) from each importance sampling density

p(x|0)) i =1,...,77 and retained every 1,000 point pattern.
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7.1 Sampler details

In the Metropolis-Hastings sampler, suppose the current and proposed parameter
vectors are U = (6°"T, h°"") and PP = (DP°P, BP°P) respectively. We tried three

different ways of choosing which set of importance samples to use to estimate r: 1)

the @ which minimized ||g*"" — §|| = \/ (bewr — 132 + (e — Rl)2; 2) the 8 which
minimized the average distance from §°™" and #°*°P to 6;; i.e. (|| —8i|| + ||6F*P —
0:11)/2; and 3) the 8 which minimized the average squared distance from 0°* and
gPreP {0 @) — a significant penalty for a distant ™ or §P™F is levied.

A systematic scan Metropolis-Hastings sampler updated the parameter vector by
alternating between a b-move and an h-move. Suppose at the beginning of iteration ¢,
geu = (b b)), For a b-move, a new interaction distance &* was proposed uniformly
in the interval (59 —0.2, 5 +0.2); thus 7P = (b*, b)) and the proposal ratio equals
1. Note that if 6* ¢ (0,2.5), then the candidate was automatically rejected (via the
prior) and 511D — b, For the subsequent h-move, when 7 = (51D p) p* was
~ chosen uniformly in the interval (b — 0.5, h® -+ 0.5). Thus §#*» = (51 h*) and
the proposal ratio equals 1. The proposals were chosen to balance good Metropolis-
Hastings acceptance rates (Gilks et al., 1996) while, at the same time, not proposing
too large of change to the current state. The Metropolis-Hastings acceptance rates
for a b-move and an hi-move were 43.4% and 66.1% respectively.

We computed Gelman and Rubin’s convergence diagnostic using the output from
three chains with differing initial values: 0© = (1.0,0.5), 8 = (1.0,3.0), and
0© — (2.0,1.0). After 1,000 iterations, the potential scale reduction factors were
1.015696 and 1.001861 for b and % respectively. Because there was no evidence

of non-convergence after 1,000 iterations, Metropolis-Hastings sampler burn-in was

14



taken as such. The time to obtain 25,000 post burn-in iterations was approximately

5 minutes on an HP Visualize B2000 workstation.

7.2  Resulls

The estimated marginal posterior distribution of the interaction distance b is
displayed in Figure 3; separate estimates corresponding to the method of choosing

the importance sampling density p(x|f]) are displayed.
[Figure 3 about here.]

The choice of importance sampling density does not have a large impact. The
marginal posterior distribution of b is surprisingly complex, with strong bi-modality
and numerous local modes. The jagged nature of the plot is apparently due to ¢y(-),
and hence L{#), being a discontinuous function. The posterior mean of b, when
choosing the . closest to 8", is 0.817 meters with Monte Carlo error of 0.002. The
95% HPD interval for b is (0.654,1.004) meters, and the posterior mode is approx-
imately 0.757. To conclude, saplings at a distance of more than approximately 0.8
meters cease to interact with one another.

Figure 4 displays the marginal posterior density estimate of the Straussian pa-

rameter h.
{Figure 4 about here.]

The posterior distribution indicates that the saplings show moderate inhibition,
which is expressed by having some trees within a distance of b. The posterior mean
of A is 1.153 with Monte Carlo error of 0.0066. The 95% HPD interval for h is

(0.501,1.821), and the posterior mode is 1.037. The posterior probability that the
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pine saplings exhibit inhibition is P(h > 0O|x) ~ 1. Similar inferences for b and h
were obtained when substituting Chen and Shao’s optimal ratio importance sampling
estimator of r for our grid-based importance sampling estimator.

Venables and Ripley (1994) obtained maximum pseudo-likelihood estimates for
b and h of 0.7 and 1.897 respectively. In an earlier analysis, Ripley (1981) obtained
an estimate of i equal to 1.609. Without conditioning on n, Baddeley and Turner
(2000) obtained maximum pseudo-likelihood estimates (depending on quadrature
scheme and type of edge correction) for k ré,nging from 1.234 to 1.609 while holding
b fixed at 0.7 meters. Their estimate of b was obtained by maximizing the profile
log-pseudo-likelihood.

Baddeley and Turner obtained interval estimates by initially running a
Metropolis-Hastings birth-death-shift algorithm (Geyer and Moller, 1994) to generate
500 realizations él, Cey 9500 from the distribution of the maximum pseudo-likelihood
estimator under the fitted model; namely, the unconditional Strauss process with
b = 0.7 and h = 1.546. From the simulations, the mean vector and covariance matrix
were estimated. Normal-based 95% confidence intervals were {0.627,0.773) for b and
(0.998,2.856) for h (the normality of the estimator of b is suspect). Confidence
intervals based on the empirical quantiles of the parametric bootstrap procedure

were (0.62,0.81) for b and (0.942, 2.408) for h.

8. Some thoughts on convergence

It is not clear whether a Metropolis-Hastings sampler with a stochastically approxi-
mated acceptance probability will converge to the correct target distribution — how-

ever, analytical verification is difficult. While our simulation study shows that good
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point estimates can be obtained, we sought verification in our real data example, for
which, of course, the true parameter values are unknown.

To verify that our grid-based algorithm is converging to the correct distribution,
we will utilize a deterministic approximation of Z,(#), denoted by Z,(#), in the

sampler. Now, noting that

9(x10) 4 . 9(x10) Za(6) 9(x[6)
p(0]x) Zn(g)p(H)— 7.00) Zn(a)p(ﬁ)— 7.(0) p(0),

we can sample from p(6|x) = [g{x|0)/ Z,.(8)]p(0) which is the posterior corresponding

to a slightly different prior

than p(#). Thus, if our grid-based sampler converges to ${f|x), this would indicate
" that it is converging to the correct distribution.

In the Swedish pine sapling data, we use, for simplicity, a Straussian model (1)
with interaction distance fixed at 0.7 meters — thus, 8 is simply the Straussian
parameter. To estimate Z,(0), at 13 evenly spaced values of & ranging from 0 to 3,
we obtained ten million updates (after a 50,000 iteration burn-in) from p(x|0') via
Geyer and Moller’s algorithm. We then used the realizations to obtain 13 respective
estimates of Z,,(¢') via (4). A cubic regression of log(Z,(#")) on & allowed log(Z,(#)),
and hence Z,(#), to be approximated for # € (0,3) (the log-transformed regression
enabled a better fit through the otherwise very small Z,,(#) values). Our parametric
estimate Z,(0) was Z,(0) = exp{0.037 — 35.3370 + 13.0896% — 1.5366°} for 0 € (0, 3).

On the interval (0,3), we placed a truncated N(2,0? = 100) prior on §. Using

the same proposal density as in our earlier analysis, we obtained 20,000 updates
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(following a 5,000 iteration burn-in) via MCMC. The density estimate of p(0]x) is

displayed in Figure 5.
[Figure 5 about here.]

The posterior mean is approximately 1.127, while the 95% HPD interval is

(0.619,1.601). The shorter interval estimate is largely a consequence of fixing the
interaction distance during the analysis, and possibly due to estimating r via de-
terministic means. Additionally, we performed a similar analysis with ¢ = (b, h)
in (1). The results were again consistent with the grid-based analysis. Because
the grid-based sampler converges to a distribution close to 5(#|x}, this supports its

convergence to the proper target distribution.

9. Discussion
In this article we have outlined a procedure to obtain Bayesian inferences in pairwise
interacting point processes. Our new implementation allows for a wide variety of
inferences from the full posterior distribution such as point and interval estimates;
the probability that there exists spatial regularity is also easily approximated. While
we have only explored the simple Straussian model, the ideas are easily generalized
to more complex models such as marked pairwise interacting point processes. In
addition, we have shown that importance sampling can be implemented within a
reversible jump MCMC framework.

With current computing technology, grid-based importance sampling is feasible
only for models in which the parameter space is of low dimension. If the parameter
space had high dimension, there would be too many locations & at which importance

samples would need to be generated (imagine constructing a grid in ®!, then 22, then
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5%, ete.). Future advances in computing and storage technology will make for the rou-
tine application of grid-based importance sampling within higher-dimensional spaces.
However, we have demonstrated that the dimensionality problem can be avoided if
importance samples are generated on the fly, for example via (optimal) ratio impor-

tance sampling. Unfortunately such an implementation is computationally costly.
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Figure 1. Location of 71 pine saplings within a 10 x 10 meter square region of forest.
Data obtained from the MASS library accompanying Venables and Ripley (1994).
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Figure 2. Realization of binomial process with 71 points.
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Posterior Density
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Figure 3. Marginal posterior density estimate of the interaction distance b. Solid
line depicts the marginal posterior density estimate when choosing the #; closest to
gevrr, dashed line when choosing the # which minimizes ({|g°™* —@:||+]|0"*P —8||) /2,
dotted line when choosing the @ which minimizes (||0™ — 6%]|* + ||6P*°P — 6/]|2) /2.
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Figure 4. Marginal posterior density estimate of the Straussian parameter h. Solid
line depicts the marginal posterior density estimate when choosing the 8! closest to
#**, dashed line when choosing the ¢, which minimizes (|| —&.||+||§¥*°P —&||)/2,
dotted line when choosing the ¢ which minimizes (][§°" — 8;]{% + ||g"P — #[12)/2.
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Figure 5. Density estimate of §(8|x), the posterior distribution of the Straussian
parameter ¢ under the prior g(f).
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Table 1
Estimated coefficient of variation (CV) of v for various values of the current ™"

and proposed GP*P Straussian parameter. The importance sampling location was
¢ — 1.0.

aprop GCUI'L' CV gprop BCU].'L' CV

1.125 0.875 0.032 | 1.25 0.75 0.076
1.250 0.750 0.076 | 1.50 1.00 0.087
1.375 0.625 0.124 | 1.5  1.25 0.155
1.500 0.500 0.206 | 2.00 1.50 0.240
1.750 0.250 0.626 | 2.50 2.00 0.423
2,000 0.000 5.530 [ 3.00 250 0.462
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Table 2
Estimated coefficient of variation (CV) of v for various values of the current "
and proposed OP™°P interaction distance. The importance sampling location was
0! = 0.10.

QPI'OP GCHLT CV eprop HCHIT (‘/'V

0.1025 0.0975 0.068 | 0.105 0.095 0.130
0.1050 0.0950 0.130 | 0.110 0.100 0.153
0.1075 0.0925 0.231 | 0.115 0.105 0.234
0.1100 0.0900 0.298 | 0.120 0.110 0.332
0.1125 0.0875 0.326 | 0.130 0.120 0.569
0.1200 0.0800 0.522 | 0.140 0.130 0.915
0.1300 0.0700 1.122 | 0.150 0.140 1.287
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Table 3
Bstimated bias and mean squared error resulting from the estimation of the
Straussian repulsion parameter from o Bayesian analysis of 100 simulated datasets

from p(x|8).

Truth Bias MSE | Truth Bias MSE
=03 0.042 0.030 | #=15 —-0.025 0.085
=05 —0.029 0054 |80=17 0.042 0.097
=07 0.024 0.043 | =20 0.018 0.121
=10 —0.003 0.054|68=23 0.069 0.136
#=1.3 0.005 0072 | 8=2.5 0.121 0.128
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Table 4
Estimated coverage (s.e.) and average interval width for 95% HPD and equal tail
intervals, bias and mean squared error resulting from the Bayesion estimation of
the Straussian parameter in 500 simulated datasels generated from p(x|0 = 1.0).

Gprop c (chrr 4+ 10) 9prop o (ecurr ﬂ: 05)

HPD Coverage 95.0% (0.97%) 93.2% (1.13%)
HPD Ave. Width 1.012 0.932
Eq. Tail Coverage  95.6% (0.92%) 04.2% (1.05%)
Eq. Tail Ave. Width 1.029 0.948
Bias 0.0074 0.0240
MSE 0.0652 0.0620
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